Multiaccurate Proxies for Downstream Fairness

Emily Diana (ediana@wharton.upenn.edu) with Wesley Gill, Michael Kearns, Krishnaram Kenthapadi, Aaron Roth, Saeed Sharifi-Malvajerdi

RESEARCH QUESTION

- Algorithmic fairness aims to understand and prevent bias in machine learning models.
- Often one wants to train a model that is fair with respect to a sensitive feature that has been redacted from training data?
- Could be for legal or policy reasons:
- In the United States it is against the law to use race as an input to consumer lending models.
- Many large consumer-facing organizations choose not to ask their customers for such information.

How do we make a model fair with respect to race if we don't have data about race?

FRAMEWORK

Data domain Ω divided into K groups

- ▶ Proxy $\hat{z} \in \mathcal{G}$: vector of K real numbers $(\hat{z}_1, ..., \hat{z}_K)$
- **b** Downstream model class $\mathcal{H} : \mathcal{X} \to \mathcal{Y}$

Proxy Learner aims to find proxy \hat{z} such that if a Downstream Learner trains a model *h* that is fair with respect to \hat{z} , *h* is also fair with respect to *z*.

KEY INSIGHT: PROXY CAN BE REAL VALUED

We can write fairness constraints, usually defined with respect to binary valued group membership using a real valued proxy

$$\Pr[h(x) \neq y | z_k = 1] = \frac{\Pr[z_k = 1, \frac{1}{\Pr[z_k]}]}{\Pr[z_k]}$$
$$= \frac{\mathbb{E}\left[1 | z_k = 1\right]}{\mathbb{E}\left[1 | z_k \right]}$$
$$= \frac{\mathbb{E}\left[z_k 1 | h(x)\right]}{\mathbb{E}\left[z_k\right]}$$

If the following holds:

$$\frac{\mathbb{E}\left[z_k \mathbf{1}\left[h(x) \neq y\right]\right]}{\mathbb{E}[z_k]} = \frac{\mathbb{E}\left[\hat{z}_k(x) \mathbf{1}\right]}{\mathbb{E}\left[\hat{z}_k(x) \mathbf{1}\right]}$$

$$\frac{\mathbb{E}\left[\hat{z}_{k_{i}}(x) \mathsf{1}\left[h(x) \neq y\right]\right]}{\mathbb{E}[\hat{z}_{k_{i}}(x)]} = \frac{\mathbb{E}\left[\hat{z}_{k_{j}}(x)\right]}{\mathbb{E}}$$

$$\left|\frac{\mathbb{E}_{(x,z)}\left[z_{k} \mathsf{1}\left[h(x) \neq y\right]\right]}{\mathbb{E}_{(x,z)}\left[z_{k}\right]} - \frac{\mathbb{E}_{(x,z)}\left[\hat{z}_{k}(x) \mathsf{1}\right]}{\mathbb{E}_{(x,z)}\left[\hat{z}_{k}(x) + \frac{1}{2}\right]}\right|$$

$$\begin{array}{ll} \underset{\hat{z} \in \mathcal{G}}{\text{minimize}} & \frac{1}{n} \sum_{i=1}^{n} \left(z_i - \hat{z}(x_i) \right)^2 \\ \text{subject to} & \frac{\sum_{i=1}^{n} z_i \mathbb{1} \left[h(x_i) \neq y_i \right]}{\sum_{i=1}^{n} z_i} = \frac{\sum_{i=1}^{n} \hat{z}(x_i)}{\sum_{i=1}^{n} z_i} \end{array}$$

estimator for z on the set of points where h errs.

Dataset	Sample Count	${\mathcal X}$ Dim	Label
ACSEmployment	196104	12	Employment
ACSIncome	101270	4	Income > \$50K
ACSIncomePovertyRatio	196104	15	Income-Poverty Ratio < 250%
ACSMobility	39828	17	Same address one year ago
ACSPublicCoverage	71379	15	Health Insurance
ACSTravelTime	89145	8	Commute > 20 minutes

University of Pennsylvania

EXPERIMENTS: ACS DATA

Figure: Proxy results on the ACSIncome dataset with race as sensitive feature

Figure: Proxy results on the ACSIncome dataset with age as sensitive feature

Figure: Proxy results on the ACSIncome dataset with sex as sensitive feature

CONCLUSION

- We have shown that it is possible to efficiently train proxies that can stand in for missing sensitive features to effectively train downstream classifiers subject to a variety of demographic fairness constraints.
- Our theoretical and empirical results demonstrate that proxies trained using our methods can stand in as near perfect substitutes for sensitive features in downstream training tasks.
- Results crucially depend on the assumption that the data that the Proxy Learner uses to train its proxy is distributed identically to the data that the Downstream Learner uses.
- ▶ In real applications, either of these assumptions can fail (or can become false due to distribution shift, even if they are true at the moment that the proxy is trained).

SELECTED REFERENCES

- Alexandra Chouldechova. "Fair Prediction with Disparate Impact: A Study of Bias in Recidivism Prediction Instruments". In: Big Data 5.2 (2017), pp. 153–163. DOI: 10.1089/big.201
- Frances Ding et al. "Retiring Adult: New Datasets for Fair Machine Learning". In: CoRR abs/2108.04884 (2021). arXiv: 2108.04884. URL: https://arxiv.org/abs/2108.04884.
- Cynthia Dwork et al. "Fairness through Awareness". In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference. ITCS '12. Cambridge, Massachusetts: Association [3] Machinery 2012 2143226 ISBN: 9781450311151 DOI: 10.1145/2090236.2090255 UBL: https:
- Yoav Freund and Robert E. Schapire. "Game Theory, On-line Prediction and Boosting". In: Proceedings of the Ninth Annual Conference on Computational Learning Theory. 1996.
- Ursula Hébert-Johnson et al. "Multicalibration: Calibration for the (computationally-identifiable) masses". In: International Conference on Machine Learning. PMLR. 2018, pp. 1939–1948.
- Christopher Jung et al. "Moment Multicalibration for Uncertainty Estimation". In: Conference on Learning Theory. PMLR. 2021. Jon Kleinberg, "Inherent Trade-Offs in Algorithmic Fairness". In: Abstracts of the 2018 ACM International Conference on Measurement and Modelina of Computer Systems. SIGMETRICS '18
- chinery, 2018, p. 40. ISBN: 9781450358460. DOI: 10.1145/321 Dino Pedreshi, Salvatore Ruggieri, and Franco Turini. "Discrimination-Aware Data Mining". In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD '08. Las Vegas, Nevada, USA: Association for Computing Machinery, 2008, 5608568. ISBN: 9781605581934. DOI: 10.1145/1401890.1401959. URL: https: