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RESEARCH QUESTION

▶ Algorithmic fairness aims to understand and prevent bias in machine learning models.
▶ Often one wants to train a model that is fair with respect to a sensitive feature that has been

redacted from training data?
▶ Could be for legal or policy reasons:

▶ In the United States it is against the law to use race as an input to consumer lending models.
▶ Many large consumer-facing organizations choose not to ask their customers for such information.

How do we make a model fair with respect to race if we don’t have data about race?

FRAMEWORK

▶ Data domain Ω divided into K groups:

Ω =

non-sensitive features︷︸︸︷
X × Y︸︷︷︸

label

×
sensitive feature︷︸︸︷

Z

(x , y , z)
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▶ Proxy model class G : X → RK

▶ Proxy ẑ ∈ G: vector of K real numbers (ẑ1, ..., ẑK )

▶ Downstream model class H : X → Y
Proxy Learner aims to find proxy ẑ such that if a
Downstream Learner trains a model h that is fair with
respect to ẑ, h is also fair with respect to z.

Proxy
Learner

z x,y

Downstream
Learner

Fair
Machine
Learning

Model
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KEY INSIGHT: PROXY CAN BE REAL VALUED

We can write fairness constraints, usually defined with respect to binary valued group
membership using a real valued proxy

Pr [h(x) ̸= y |zk = 1] =
Pr [zk = 1,h(x) ̸= y ]

Pr [zk = 1]

=
E [1 [zk = 1]1 [h(x) ̸= y ]]

E [1 [zk = 1]]

=
E [zk1 [h(x) ̸= y ]]

E [zk ]

KEY INSIGHT: REPLACE Z WITH Ẑ

If the following holds:

E [zk1 [h(x) ̸= y ]]
E[zk ]

=
E [ẑk(x)1 [h(x) ̸= y ]]

E [ẑk(x)]

Then if a model is fair with respect to ẑ

E [ẑki (x)1 [h(x) ̸= y ]]
E[ẑki (x)]

=
E
[
ẑkj (x)1 [h(x) ̸= y ]

]
E
[
ẑkj (x)

]
it also satisfies fairness constraints with respect to the true attribute z.

MAIN RESULT: PROXY DEFINITION

We say ẑ is an α-proxy for z if for all classifiers h ∈ H, and all groups k ∈ [K ],∣∣∣∣E(x ,z) [zk1 [h(x) ̸= y ]]
E(x ,z) [zk ]

−
E(x ,z) [ẑk(x)1 [h(x) ̸= y ]]

E(x ,z) [ẑk(x)]

∣∣∣∣ ≤ α

Then to learn a proxy, we can solve the linear program:

minimize
ẑ ∈ G

1
n

n∑
i=1

(zi − ẑ(xi))
2

subject to
∑n

i=1 zi1 [h(xi) ̸= yi ]∑n
i=1 zi

=

∑n
i=1 ẑ(xi)1 [h(xi) ̸= yi ]∑n

i=1 ẑ(xi)
, ∀h∈H

(1)

These constraints are multiaccuracy constraints [5, 6] – we want ẑ to be an unbiased
estimator for z on the set of points where h errs.

STRONG DUALITY AND LOW-REGRET DYNAMICS
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Strong Duality Freund & Schapire [4]

EXPERIMENTS: OVERVIEW

Simulating a downstream learner, we train a model to be fair with respect to four
representations of the sensitive feature and evaluate its performance:
▶ True Labels: Z
▶ Baseline Proxy: Logistic regression of Z on X
▶ H-Proxy: Solution to Program (1) without squared error objective
▶ MSE Proxy: Solution to Program (1) with squared error objective
Conducted experiments on American Community Survey (ACS) datasets and tasks from [2].

Dataset Sample Count X Dim Label
ACSEmployment 196104 12 Employment
ACSIncome 101270 4 Income > $50K
ACSIncomePovertyRatio 196104 15 Income-Poverty Ratio < 250%
ACSMobility 39828 17 Same address one year ago
ACSPublicCoverage 71379 15 Health Insurance
ACSTravelTime 89145 8 Commute > 20 minutes

EXPERIMENTS: ACS DATA

Figure: Proxy results on the ACSIncome dataset with race as sensitive feature

Figure: Proxy results on the ACSIncome dataset with age as sensitive feature

Figure: Proxy results on the ACSIncome dataset with sex as sensitive feature

CONCLUSION

▶ We have shown that it is possible to efficiently train proxies that can stand in for missing
sensitive features to effectively train downstream classifiers subject to a variety of
demographic fairness constraints.

▶ Our theoretical and empirical results demonstrate that proxies trained using our methods
can stand in as near perfect substitutes for sensitive features in downstream training tasks.

▶ Results crucially depend on the assumption that the data that the Proxy Learner uses to
train its proxy is distributed identically to the data that the Downstream Learner uses.

▶ In real applications, either of these assumptions can fail (or can become false due to
distribution shift, even if they are true at the moment that the proxy is trained).
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