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Motivation

Motivated by challenges associated with securities lending, the
mechanism underlying short selling of stocks in financial markets

We consider allocation of a scarce
commodity in settings in which privacy
concerns or demand uncertainty may
be in conflict with truthful reporting

Goal is to construct a privacy protecting
allocation mechanism that motivates
truthful reporting without sacrificing too
much utility
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Contributions

1 Without privacy constraints, we construct an optimal greedy
allocation rule for which truthfulness is a dominant strategy

2 In order to guarantee clients an appropriate notion of privacy, we
reformulate the allocation rule as an ascending price auction in which
clients cannot collude to infer too much information about any one
bidder

3 Finally, we expand this into an allocation mechanism that can handle
arbitrary and adaptive client request strategies while still providing
privacy and near optimality and incentivizing truthfulness

3 / 16



Setting

Lender distributes up to V shares to n clients over time horizon T at
fixed price per unit

Each client i has non-strategic distribution over usages, Uit

Client has strategic distribution over requests, Qit(rit |uit)
At each time t, client i draws uit , rit ∼ Qit(uit , rit), but only request,
rit , is visible to lender

We consider a distribution for client i at time t truthful if
Qit(rit |uit) = 1 if uit = rit and Qit(rit |uit) = 0 otherwise
Below are two strategic choices of Qit(rit |uit) for client i

Table: Sample Truthful Distribution

uit

rit 0 1 2

0 1
3 0 0

1 0 1
3 0

2 0 0 1
3

Table: Sample Untruthful Distribution

uit

rit 0 1 2

0 1
9

1
9

1
9

1 0 1
6

1
6

2 0 0 1
3
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Clients’ and Lender’s Goals

Definition

An allocation rule A is a one-shot algorithm that maps a set of requests
(rit) and conditional distributions Qit(·|uit) on rit to an allocation St

Lender’s Goal: Choose allocation rule A to maximize lender’s utility

Lender’s utility for allocation rule A is expected number of shares used

Allocation rule assumes full knowledge of conditional distributions
Qi (ri |ui ), which could be estimated from a client’s history

Given knowledge of Qi , lender can compute the posterior distribution
Qi (ui |ri ) on the true demand ui given ri , via Bayes’ rule:

Client’s payoff is number of shares actually used: if client i is allocated
sit shares in an allocation St , the payoff is

vi (St) = min(sit , uit)
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Greedy Allocation Rule

Algorithm maximizing lender’s utility (Greedy): Greedy operates by
sequentially assigning shares 1...V , where each share is assigned to the
client i most likely to utilize one additional share (based on Qi (ui |ri ))

Results: The allocation returned by Greedy, S , maximizes the expected
payoff for the lender. Given that the lender is solving the allocation
problem optimally for the reported Q distributions, truth telling is a
dominant strategy

Theorem: Fix a set of choices Q−i and reports r−i for all clients other
than i , and a realization of client i ’s usage ui ∼ Ui . Let QT

i denote the
truthful strategy QT

i (ri |ui ) = 1ri , and let Qi (ri |ui ) denote any other
strategy. Let A denote the lender’s optimal allocation. Then:

v iA(Qi ) ≤ v iA(QT
i )
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Auction Formulation

We also seek to understand situations in which clients have privacy
concerns and possibly an adaptive request strategy

First, we re-conceptualize the problem of computing the optimal
allocation for the lender given known distributions Qi as computing
the social welfare maximizing allocation with respect to a set of
valuation functions for each client i

We then give an algorithm that uses an ascending price auction
formulation to compute an approximately optimal allocation,
which can be adapted to satisfy (joint) differential privacy
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Auction Setting

Consider a more general setting in which V identical units of a good
are being sold to n bidders

Each bidder has arbitrary decreasing marginal valuation function for
up to U units of each good

Goal: Wish to find welfare maximizing allocation
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Auction Rule

Ascending price auction (Auction) works by sequentially allowing
bidders to claim an additional unit of the good if the current price is
below their specified marginal utility for that unit

Price increments by α after every V bids

Auction terminates when there are no more bids
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Auction Rule Guarantee

Theorem

Auction(V , α,U) terminates after at most V
α + 1 rounds. At termination,

S constitutes an αV
n -optimal allocation:

v(S) ≥ max
S ′

v(S ′)− αV

n

Still no notion of privacy

What we want here is joint differential privacy, which in an intuitive
sense, prevents adversaries from learning too much about agent i by
observing the allocation to agents other than i (or from all other
agents colluding)
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Private Auction Formulation

We modify Auction as follows to make it jointly differentially private:

1 Running count of total number of bids placed so far is computed
approximately using a differentially private estimator

2 Auction stops early, based on some accuracy parameter fed to
algorithm

3 Run the auction with a supply of V − E shares, where E corresponds
to the maximum error of our differentially private bid counter (ensures
computed allocation is always feasible)
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Private Auction Guarantees

Private Auction obtains the following results:

For sufficiently large auctions, we can achieve privacy while still
outputting a high-quality allocation (near optimal welfare).

Private auction remains approximately dominant-strategy truthful.
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Allocation Mechanism

Finally, we form an approximately optimal and approximately private
allocation mechanism that can handle adaptive strategies by clients

Definition

An allocation mechanism A maps the requests rt = (rit) at time t and the
history Ht to allocations of shares: A(r1t , . . . , rnt ;Ht) = St .

Now, each client i has the freedom to (adaptively) choose an
arbitrary mapping Lti : Hi

t × [U]→ [R] that maps the realized history
and demand Ht , uit respectively, to a request rit .
The utility of client i is defined as:

v iA(Li1, . . . , L
i
T ) =

T∑
t=1

E[vi (A(rit , r−it ;Ht)],

Lender’s utility now incorporates clients’ histories:

v(A) =
∑
t

∑
i

Euit∼Qit(uit |rit ,Ht),A min(A(r1, . . . , rn;Q1, . . . ,Qn)i , uit)
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Private Allocation Mechanism

Algorithm 1 Greedy Private Mechanism

procedure A(Utility distributions Ui ∈ ∆([U]) for n clients, V shares to
allocate at each of T rounds, PrivAuc, ε, α)

for t = 1 . . .T do
for i = 1 . . . n do

Client i draws uit ∼ Ui

Client i picks request distribution Qit = Lit(Hi
t , uit)

Client i draws rit |uit ∼ Qit(rit |uit), and submits rit

A updates its estimates Q̂i (rit) = 1rit

A computes allocation St = PrivAuc(Q̂1(r1t), . . . Q̂t(rnt), ε, α)
A observes the executed shares vi (St) for each client
A updates its estimates of the conditionals Q̂i (rit)
A updates the history: Ht+1 = Ht ∪ (rit , sit , vi (St))ni=1
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Summary

Theorem: Let A be a private auction with appropriate values of U,V , ε
and ρ such that A is (ε′, β/T )-JDP with ε′ = Õ(ε/

√
T ) and outputs S

such that E [V (S)] ≥ (1− ρ)OPTV − ρ. Take β, ρ such that√
β + (1− β)ρ ≤ β2/T . Then for a (1− β) fraction of the n clients i , let

Lti∗ denote the truthful strategies, and let Lti be any other set of strategies.
Then a private greedy allocation rule for the private auction satisfies:

vi (L
1
i , . . . , L

n
i ) ≤ e2εvi (L

1
i∗, . . . , L

n
i∗) + 2βUT + eε

β2

1− β2/T

vA(Lti∗) ≥ (1− ρ)OPTV − ρT ,

where OPTV denotes the lender’s optimal utility.

Joint differential privacy in our allocation mechanism enforces truthfulness
as an approximately dominant strategy and guarantees near optimality
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