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Motivation

We want our algorithms to treat different groups of people equitably.
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A Group Fairness Definition: Equality of Group Errors

“The algorithm should make the same number of mistakes on all groups.”
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Alternative Group Fairness Definition: Minimax Group
Fairness

“The number of errors made on the worst-off group should be minimized.”
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Extending Minimax Fairness: Lexicographic Fairness

“The number of errors made on the worst-off group should be minimized,
and subject to that, the second-worst-off group’s errors should be
minimized, and subject to that. . . ”
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Approximating Lexicographic Fairness

We can only efficiently get approximate minmax-fair solutions.
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Approximating Lexicographic Fairness

How do we generalize this to the lexifair setting?
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Approximate Lexicographic Fairness: A Stable Definition

Definition (Approximate Lexicographic Fairness)

Let 1 ≤ ` ≤ K and α ≥ 0. Let ~ε = (ε1, ε2, . . . , ε`), and define

H~ε(0) , the entire model class H,

H~ε(j) , models in H~εj−1 that have the smallest

jth group error rate up to an εj approximation.

A model h satisfies (`, α)-lexicographic fairness (“lexifairness”) if h ∈ H~ε(`)
for some ~ε that is component-wise less than α.
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Convex Lexifairness

A constraint on the highest error amongst all groups, which arises in
defining minimax error, is convex, and hence amenable to algorithmic
optimization.

However, naive specifications of lexifairness involve constraints on the
second highest group errors, the third highest group errors, and more
generally kth highest errors.

These are non-convex constraints when taken in isolation.

We get around this by replacing constraints on the k ’th highest error
groups with constraints on the sums of all k-tuples of group errors.
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Our results

Define a stable and convex version of approximate lexifairness.

Derive oracle-efficient algorithms for finding approximately lexifair
solutions.

Show that when the underlying empirical risk minimization problem
absent fairness constraints is convex, our algorithms are provably
efficient.

Show that approximate lexifairness generalizes: approximate
lexifairness on the training sample implies approximate lexifairness on
the true distribution w.h.p.
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Oracle-efficient algorithms to achieve approximate
lexifairness

In regression setting, learner plays Online Projected Gradient Descent.

In classification setting, learner plays Follow-the-Perturbed-Leader.
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Algorithmic Formulation

Our approach to find lexifair models is to recursively find the
minimax (over sums of group error rates) rates

Our algorithms return a model achieving those minimax rates, and
hence that model will be lexifair.

At level j , in an inductive fashion, we are given the minimax rates
η1, . . . , ηj−1 from previous rounds, and we want to estimate ηj

Can then dictate that every sum of j group error rates is at most ηj

Writing the Lagrangian of this linear program

Let Lir (h) indicate the loss incurred by the model h on the ir ’th group.
Then the Lagrangian for this linear program can be written as

Lj ((h, ηj), λ) = ηj +

j∑
r=1

∑
{i1,...,ir}⊆[K ]

λ{i1,i2,...,ir} · (Li1(h) + . . .+ Lir (h)− ηr )

(1)
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Algorithmic Formulation: Two Player Zero-Sum Game

Can find a minimax solution for this Lagrangian with a zero-sum game
between a (L)earner and a (A)uditor:

At each round t, there is a weighting over groups determined by A

L (best) responds by computing model ht to minimize the weighted
prediction error

A updates group weights using online projected gradient descent with
respect to group errors achieved by ht

L’s final model M is uniform distribution over all of ht ’s produced

21 / 27



Finding Lexifair Regression Model

ALGORITHM 1: LexiFairReg: Finding a Lexifair Regression Model

Input: S = ∪Kk=1Gk data set consisting of K groups, (`, α) desired
fairness parameters, loss function parameters LM

for j = 1, 2, . . . , ` do
Set Tj = O( 1

α2 );

(θ̂j , η̂j) = RegNR(Tj ; η̂1, . . . , η̂j−1) (Calling Algorithm 2)

Output: (`, α)-convex lexifair model θ̂`

At each level j , we employ a subroutine in which the Learner plays
Online Projected Gradient Descent and the Auditor best responds
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Two Player Game Subroutine

ALGORITHM 2: RegNR: jth round

Input: Number of rounds T , previous estimates (η1, . . . , ηj−1)
Initialize the Learner: θ1 ∈ Θ, η1

j ∈ [0, j · LM ];

for t = 1, 2, . . . ,T do
Learner plays (θt , ηtj );

Auditor best responds: λt = λbest(θ
t , ηtj ; (η1, . . . , ηj−1));

Learner updates its actions using Projected Gradient Descent:

θt+1 = ProjΘ
(
θt − η · ∇θLj(θt , ηtj , λt)

)
ηt+1
j = Proj[0,j ·LM ]

(
ηtj − η′ · ∇ηjLj(θ

t , ηtj , λ
t)
)

Output: the average play θ̂ = 1
T

∑T
t=1 θ

t ∈ Θ, and

η̂j = 1
T

∑T
t=1 η

t
j ∈ [0, j · LM ].
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Algorithm Overview: Auditor’s Best Response

Auditor plays maximum weight on most violated constraint:

ALGORITHM 3: The Auditor’s Best Response (λbest): jth round

Input: Learner’s play (h, ηj), previous estimates (η1, . . . , ηj−1)
Compute Lk(h) for all groups k ∈ [K ];
Find the top j elements of vector (L1(h), . . . , LK (h)) and call them:
Lh̄(1)(h) ≥ . . . ≥ Lh̄(j)(h);

if ∀r ≤ j : Lh̄(1)(h) + . . .+ Lh̄(r)(h) ≤ ηr then λout = 0;

else Let r? ∈ argmaxr≤j

(
Lh̄(1)(h) + . . .+ Lh̄(r)(h)− ηr

)
, λout = λ? ;

Output: λout ∈ Λj
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Generalization

Our ability to prove out of sample bounds crucially relies on our
definitional choices that ensure stability.

Specifically, we show that if:
1 Our base class H satisfies a standard uniform convergence bound

across every group:
For distribution P and δ > 0 there exists β(δ) such that

Pr
S

[
max

h∈H,k∈[K ]
|Lk (h,S)− Lk (h,P)| > β(δ)

]
< δ

2 We have a model that is approximately convex lexifair on our dataset
S ∼ Pn

then our model is also appropriately convex lexifair on the underlying
distribution.
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Generalization for Convex Lexifairness

For every data set S sampled i .i .d . from P, if a model h satisfies
(`, α)-convex lexicographic fairness with respect to S , then with
probability at least 1− δ it also satisfies (`, α′)-convex lexicographic
fairness with respect to P for α′ = α + 2`β(δ).
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Generalization for Convex Lexifairness: Classification

Note that in the case of classification with 0/1 loss, the sample complexity
is polynomial in the relevant parameters `, α and VC dim.

Suppose H is a class of binary classifiers with VC dimension dH For every
P, every data set S ≡ {Gk}k of size n sampled i .i .d . from P, if a
randomized model p ∈ ∆H satisfies (`, α)-convex lexicographic fairness
with respect to S , then with probability at least 1− δ it also satisfies
(`, 2α)-convex lexicographic fairness with respect to P provided that

min
1≤k≤K

|Gk | = Ω

(
l2 (dH log (n) + log (K/δ))

α2

)

27 / 27


