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We want our algorithms to treat different groups of people equitably.
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A Group Fairness Definition: Equality of Group Errors

“The algorithm should make the same number of mistakes on all groups.’

Y1 =y1=y3=01

i ..

&1 &2 $3

Group error y

hy hy

3/21



A Group Fairness Definition: Equality of Group Errors

“The algorithm should make the same number of mistakes on all groups.”
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Alternative Group Fairness Definition: Minimax Group

Fairness

“The number of errors made on the worst-off group should be minimized.
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Extending Minimax Fairness: Lexicographic Fairness

“The number of errors made on the worst-off group should be minimized,
and subject to that, the second-worst-off group's errors should be

minimized, and subject to that...”
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Extending Minimax Fairness: Lexicographic Fairness

“The number of errors made on the worst-off group should be minimized,
and subject to that, the second-worst-off group's errors should be

minimized, and subject to that...”
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Approximating Lexicographic Fairness

We can only efficiently get approximate minmax-fair solutions.
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Approximating Lexicographic Fairness

How do we generalize this to the lexifair setting?
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Approximating Lexicographic Fairness
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Approximating Lexicographic Fairness
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Approximating Lexicographic Fairness
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Approximating Lexicographic Fairness
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Approximate Lexicographic Fairness: A Stable Definition

Definition (Approximate Lexicographic Fairness)

Let 1 </ < K and a > 0. Let €= (€1, €2,

., €), and define
Hio = the entire model class H,

8) £ models in Hf_l that have the smallest

Jth group error rate up to an ¢; approximation.

A model h satisfies (¢, a)-lexicographic fairness (“lexifairness”) if h € ’Ha)
for some € that is component-wise less than «.
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Convex Lexifairness

@ A constraint on the highest error amongst all groups, which arises in
defining minimax error, is convex, and hence amenable to algorithmic
optimization.

@ However, naive specifications of lexifairness involve constraints on the
second highest group errors, the third highest group errors, and more
generally kth highest errors.

@ These are non-convex constraints when taken in isolation.

@ We get around this by replacing constraints on the k'th highest error
groups with constraints on the sums of all k-tuples of group errors.
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Our results

@ Define a stable and convex version of approximate lexifairness.

@ Derive oracle-efficient algorithms for finding approximately lexifair
solutions.

@ Show that when the underlying empirical risk minimization problem
absent fairness constraints is convex, our algorithms are provably
efficient.

@ Show that approximate lexifairness generalizes: approximate
lexifairness on the training sample implies approximate lexifairness on
the true distribution w.h.p.
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Oracle-efficient algorithms to achieve approximate
lexifairness

/

@ In regression setting, learner plays Online Projected Gradient Descent.

@ In classification setting, learner plays Follow-the-Perturbed-Leader.
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Algorithmic Formulation

@ Our approach to find lexifair models is to recursively find the
minimax (over sums of group error rates) rates

@ Our algorithms return a model achieving those minimax rates, and
hence that model will be lexifair.

@ At level j, in an inductive fashion, we are given the minimax rates
M, ...,nj—1 from previous rounds, and we want to estimate 7);

o Can then dictate that every sum of j group error rates is at most 7);
@ Writing the Lagrangian of this linear program

Let L; (h) indicate the loss incurred by the model h on the i,'th group.
Then the Lagrangian for this linear program can be written as

J
Li(thm) N =m+> D AMasiy - (L (D) + ..+ Li(h) =)
r=1 {iy,...ir ;C[K]
(1)
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Algorithmic Formulation: Two Player Zero-Sum Game

Can find a minimax solution for this Lagrangian with a zero-sum game
between a (L)earner and a (A)uditor:

@ At each round t, there is a weighting over groups determined by A

o L (best) responds by computing model h; to minimize the weighted
prediction error

@ A updates group weights using online projected gradient descent with
respect to group errors achieved by h;

@ L'’s final model M is uniform distribution over all of h;'s produced
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Finding Lexifair Regression Model

ALGORITHM 1: LexiFairReg: Finding a Lexifair Regression Model

Input: S = UK | Gy data set consisting of K groups, (¢, ) desired
fairness parameters, loss function parameters Ly,

for j=1,2,...,/do

L Set Tj = O(%);

~

(0;,7;) = RegNR(Tj; 1, . ..,7j—1) (Calling Algorithm 2)
Output: (£, a)-convex lexifair model 6,

@ At each level j, we employ a subroutine in which the Learner plays
Online Projected Gradient Descent and the Auditor best responds
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Two Player Game Subroutine

ALGORITHM 2: RegNR: jth round

Input: Number of rounds T, previous estimates (71, .

ceyMi—1
Initialize the Learner: 61 € ©, 77 € [0,) - Lu]; 1)
fort=1,2,..., T do
Learner plays (6, 7f);
Auditor best responds: \f = /\best(ﬁt,nf; (m,--.,mj-1));

Learner updates its actions using Projected Gradient Descent:

0t+1 = PI’Oj@ (0t -n: v9£j(0t7 7]}7 )‘t))

it = Projio g,y (nf —n' - Vi, Li(6%,nf, A1)

Output: the average play § = % Zthl 0t € ©, and
=+ anf €04+ Lul
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Algorithm Overview: Best Response

Auditor plays maximum weight on most violated constraint:

ALGORITHM 3: The Auditor’'s Best Response (Apest): jth round

Input: Learner’s play (h,7;), previous estimates (71, ...,7j-1)

Compute L(h) for all groups k € [K];

Find the top j elements of vector (Li(h),...,Lk(h)) and call them:
Lﬁ(l)(h) >, > LE(j)(h)?

i V7 <o Ly () + .o+ Ly (h) < 7 then Aoye = O;

else Let r* € argmax,; (L,—,(l)(h) oot Ly (h) — n,), Nout = N* ;

Output: A\t €A;
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Generalization

@ Our ability to prove out of sample bounds crucially relies on our
definitional choices that ensure stability.
@ Specifically, we show that if:

@ Our base class H satisfies a standard uniform convergence bound
across every group:
For distribution P and ¢ > 0 there exists 3(d) such that

P Li(h,S) — Lk (h, > B(6)] <o
2r | yomax 1Lk (b S) = L (h,P)| > 5(0)

@ We have a model that is approximately convex lexifair on our dataset
S~Ppn

then our model is also appropriately convex lexifair on the underlying
distribution.
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Generalization for Convex Lexifairness

For every data set S sampled i.i.d. from P, if a model h satisfies
(¢, a)-convex lexicographic fairness with respect to S, then with
probability at least 1 — § it also satisfies (¢, a)-convex lexicographic
fairness with respect to P for o/ = o + 2£5(9).
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Generalization for Convex Lexifairness: Classification

Note that in the case of classification with 0/1 loss, the sample complexity
is polynomial in the relevant parameters ¢, « and VC dim.

Suppose H is a class of binary classifiers with VC dimension dy; For every
P, every data set S = { Gy}« of size n sampled i.i.d. from P, if a
randomized model p € AH satisfies (¢, a)-convex lexicographic fairness
with respect to S, then with probability at least 1 — ¢ it also satisfies

(£, 2a)-convex lexicographic fairness with respect to P provided that

2 (dy log (n) + log (K/5))>
a?

in, 16 =2
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