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ALGORITHMIC FAIRNESS IN THE NEWS

KEY INSIGHT: PROXY CAN BE REAL VALUED

EXPERIMENTS: ACS DATA

ACSIncome — Race

We can write fairness constraints, usually defined with respect to binary valued group
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We say Z is an a-proxy for z if for all classifiers h € H, and all groups k € [K],
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Figure: Proxy results on the ACSIncome dataset with age as sensitive feature
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Linear

> In the United States it is against the law to use race as an input to consumer lending models. STRONG DUALITY AND LOW-REGRET DYNAMICS Figure: Proxy results on the ACSIncome dataset with sex as sensitive feature

> Many large consumer-facing organizations choose not to ask their customers for such information.
How do we make a model fair with respect to race if we don’t have data about race?
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Solution

CONCLUSION

» We have shown that it is possible to efficiently train proxies that can stand in for missing
sensitive features to effectively train downstream classifiers subject to a variety of
demographic fairness constraints.
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» Data domain 2 divided into K groups:
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Conducted experiments on American Community Survey (ACS) datasets and tasks from [2].

» Proxy model class G : X — RK
» Proxy z € G: vector of K real numbers (2, ..., 2x)
» Downstream modelclass H: X — )

Proxy Learner aims to find proxy Z such that if a
Downstream Learner trains a model h that is fair with
respect to Z, his also fair with respect to z.

Machine
Learning
Model

Dataset Sample Count | X Dim | Label

ACSEmployment 196104 12 Employment

ACSIncome 101270 4 Income > $50K
ACSIncomePovertyRatio 196104 15 Income-Poverty Ratio < 250%
ACSMobility 39828 17 Same address one year ago
ACSPublicCoverage 71379 15 Health Insurance
ACSTravelTime 89145 8 Commute > 20 minutes
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